Telegram Group & Telegram Channel
πŸ’  Compositional Learning Journal Club

Join us this week for an in-depth discussion on Compositional Learning in the context of cutting-edge text-to-image generative models. We will explore recent breakthroughs and challenges, focusing on how these models handle compositional tasks and where improvements can be made.

βœ… This Week's Presentation:

πŸ”Ή Title: Can We Generate Images with CoT? Let's Verify and Reinforce Image Generation Step by Step


πŸ”Έ Presenter: Amir Kasaei

πŸŒ€ Abstract:
This paper explores the use of Chain-of-Thought (CoT) reasoning to improve autoregressive image generation, an area not widely studied. The authors propose three techniques: scaling computation for verification, aligning preferences with Direct Preference Optimization (DPO), and integrating these methods for enhanced performance. They introduce two new reward models, PARM and PARM++, which adaptively assess and correct image generations. Their approach improves the Show-o model, achieving a +24% gain on the GenEval benchmark and surpassing Stable Diffusion 3 by +15%.


πŸ“„ Papers: Can We Generate Images with CoT? Let's Verify and Reinforce Image Generation Step by Step


Session Details:
- πŸ“… Date: Sunday
- πŸ•’ Time: 5:30 - 6:30 PM
- 🌐 Location: Online at vc.sharif.edu/ch/rohban

We look forward to your participation! ✌️



tg-me.com/RIMLLab/151
Create:
Last Update:

πŸ’  Compositional Learning Journal Club

Join us this week for an in-depth discussion on Compositional Learning in the context of cutting-edge text-to-image generative models. We will explore recent breakthroughs and challenges, focusing on how these models handle compositional tasks and where improvements can be made.

βœ… This Week's Presentation:

πŸ”Ή Title: Can We Generate Images with CoT? Let's Verify and Reinforce Image Generation Step by Step


πŸ”Έ Presenter: Amir Kasaei

πŸŒ€ Abstract:
This paper explores the use of Chain-of-Thought (CoT) reasoning to improve autoregressive image generation, an area not widely studied. The authors propose three techniques: scaling computation for verification, aligning preferences with Direct Preference Optimization (DPO), and integrating these methods for enhanced performance. They introduce two new reward models, PARM and PARM++, which adaptively assess and correct image generations. Their approach improves the Show-o model, achieving a +24% gain on the GenEval benchmark and surpassing Stable Diffusion 3 by +15%.


πŸ“„ Papers: Can We Generate Images with CoT? Let's Verify and Reinforce Image Generation Step by Step


Session Details:
- πŸ“… Date: Sunday
- πŸ•’ Time: 5:30 - 6:30 PM
- 🌐 Location: Online at vc.sharif.edu/ch/rohban

We look forward to your participation! ✌️

BY RIML Lab




Share with your friend now:
tg-me.com/RIMLLab/151

View MORE
Open in Telegram


RIML Lab Telegram | DID YOU KNOW?

Date: |

That strategy is the acquisition of a value-priced company by a growth company. Using the growth company's higher-priced stock for the acquisition can produce outsized revenue and earnings growth. Even better is the use of cash, particularly in a growth period when financial aggressiveness is accepted and even positively viewed.he key public rationale behind this strategy is synergy - the 1+1=3 view. In many cases, synergy does occur and is valuable. However, in other cases, particularly as the strategy gains popularity, it doesn't. Joining two different organizations, workforces and cultures is a challenge. Simply putting two separate organizations together necessarily creates disruptions and conflicts that can undermine both operations.

Importantly, that investor viewpoint is not new. It cycles in when conditions are right (and vice versa). It also brings the ineffective warnings of an overpriced market with it.Looking toward a good 2022 stock market, there is no apparent reason to expect these issues to change.

RIML Lab from vn


Telegram RIML Lab
FROM USA